Code: 20EE4501C

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

RENEWABLE ENERGY RESOURCES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
	UNIT-I							
1	a)	Explain how to estimate solar radiation on	L2	CO1	7 M			
		titled surface.						
	b)	Discuss how concentrating collectors are	L3	CO2	7 M			
		different from flat plate collectors.						
	OR							
2	a)	Briefly describe the impact of solar power	L2	CO1	7 M			
		on environment.						
	b)	With a neat sketch explain flat plate	L3	CO3	7 M			
		collectors for water/air heating.						
UNIT-II								
3	a)	Interpret various solar heating techniques.	L3	CO2	4 M			
	b)	Interpret the performance of solar cell-	L3	CO2	10 M			
		power from solar module.						
	OR							

4	<u>a)</u>	Interpret various solar cooling techniques	L3	CO2	4 M				
4	a)	Interpret various solar cooling techniques.							
	b)	Explain the principle of operation and	L3	CO3	10 M				
		description of non-convective solar pond.							
	UNIT-III								
5	a)	Discuss the differences between horizontal	L4	CO4	7 M				
		and vertical axis windmills.							
	b)	Interpret different types of biogas digesters.	L3	CO2	7 M				
OR									
6	a)	Interpret the pros and cons of biogas power	L3	CO3	8 M				
		generation (Four each).							
	b)	List out the differences between anaerobic	L4	CO4	6 M				
		and aerobic digestion systems (any six).							
	•								
UNIT-IV									
7	a)	Show the potential and kinetic energies	L3	CO3	7 M				
		associated with wave energy.							
	b)	Explain the working principle of OTEC	L4	CO5	7 M				
		system.							
OR									
8	a)	Explain the potential of tidal sources in	L2	CO1	7 M				
		India.							
	b)	Explain the pros and cons of OTEC power	L4	CO5	7 M				
		generation.							
	<u> </u>			<u> </u>					
UNIT-V									
9	a)	Interpret the principles of DEC.	L3	CO3	4 M				
	b)	Explain the principle and power generation	L4	CO5	10 M				
		techniques of MHD.							

	OR								
10	a)	Interpret the need of DEC.	L3	CO3	4 M				
	b)	Explain the merits and demerits of different	L4	CO5	10 M				
		types of fuel cells.							